本校學位論文庫
CITYU Theses & Dissertations
論文詳情
戴卫军
蔡智明
數據科學學院
數據科學博士學位課程(中文學制)
博士
2020
基於集成學習的沿海城市水浸預測研究 : 以澳門爲例
Research on Forecasting of Coastal Urban Flood Based on Ensemble Learning: A Case Study in Macau
水浸預測 ; 水文時間序列 ; 集中學習 ; 貝葉斯模型組合
Flooding prediction ; Hydrological time series ; Ensemble learning ; Bayesian model combination
沿海城市受到氣候變化和人類活動的潛在影響,水浸事件變得更加頻繁和激烈。挖掘水文時序及致災因數資料的豐富資訊,運用機器學習方法預測城市水浸過程,為城市管理部門提供可靠決策資訊,具有重要的理論意義和應用價值。主要成果如下:
(1)從城市生態系統的視角,分析了城市系統與水浸災害系統構成,總結水浸災害系統具有人類因素作用顯著、時空差異性、動態演化性的特徵。沿海城市具有典型的地域環境特徵,水浸災害為水澇型和風暴潮型的複合,水浸致災因數包括颱風路徑、風暴潮、潮汐、降雨與風速、地表徑流、城市地形與高程等。構建了澳門水浸數據集,為資料驅動模型提供研究基礎。
(2)採用長條圖分佈分析、變量相關性分析、變量重要性統計方法,分析了澳門水浸的年內季節變化特徵、水浸分佈趨勢、水浸與水浸因數關係。研究表明,澳門水浸集中發生在每年的8月到10月,並且與進入澳門800Km範圍的颱風事件緊密相關。線性相關性無法很好的表現水浸和水浸因數的非線性關係,變量重要性統計能較好地表現單個颱風事件的水浸因數貢獻率。
(3)針對水浸預測模型輸入因數難以選擇的問題,設計了多個三層靜態BP神經網路模型,引入ANPSFS方法,進行了一系列探索性實驗,通過實驗獲得構建模型的相關參數。針對特定水浸數據集,確定了預測模型的35個最佳輸入因數,最佳訓練樣本數為1分鐘間隔資料,最佳預見期為60分鐘。
(4)設計了基於貝葉斯模型組合的集成學習方法(BMC-EL)進行60分預見期的水浸預測。首先,引入洪水強度等級分類和K折交叉校驗,將訓練集生成多個訓練子集,實現均勻採樣和增加子集的多樣性。其次,將BP神經網路和隨機森林作為基學習器建立預測模型,導入訓練子集進行訓練。最後,依據基學習器在驗證集上的預測性能,制定貝葉斯模型組合策略,將測試集上的預測值集成輸出。研究表明,與線性回歸、線性支援向量機、二次支援向量機、BP神經網路、隨機森林相比,BMC-EL為最優模型,最大水深預測誤差為0.2m,顯著優於其他模型。使用水浸等級上的預測準確率來評價模型可靠性,BMC-EL可靠性最低為等級2的 65.31%,其餘等級的可靠性都在80%以上。BMC-EL模型預測表現非常穩定,預測輸出可以為城市管理者發佈水浸警報提供有效指導。
Coastal cities are potentially affected by climate change and human activities, and flooding events have become more frequent and intense. Excavating the rich information of hydrological time series and hazard factor data, using machine learning methods to predict the process of urban flooding, and providing reliable decision-making information for urban management departments, has important theoretical significance and application value. The main results are as follows:
(1) From the perspective of the urban ecosystem, the composition of the urban system and the flooding disaster system is analyzed, and it is concluded that the flooding disaster system has the characteristics of significant human factors, temporal and spatial differences, and dynamic evolution. Coastal cities have typical regional environmental characteristics. Flooding disasters are a combination of flooding and storm surge types. Flooding hazards include typhoon paths, storm surges, tides, rainfall and wind speed, surface runoff, urban topography and elevation. The Macao flooding data set was constructed to provide a research foundation for the data-driven model.
(2) Using histogram distribution analysis, variable correlation analysis, and variable importance statistical methods, the seasonal variation characteristics, flooding distribution trends, and the relationship between flooding and flooding factors in Macau during the year were analyzed. Studies have shown that flooding in Macau occurs intensively from August to October each year, and is closely related to the typhoon event that enters Macau's 800km range. Linear correlation cannot well represent the non-linear relationship between flooding and flooding factors, and variable importance statistics can better represent the contribution rate of flooding factors of a single typhoon event.
(3) Aiming at the problem that it is difficult to select the input factors of the flood prediction model, a number of three-layer static BP neural network models are designed, the ANPSFS method is introduced, a series of exploratory experiments are carried out, and the relevant parameters of the constructed model are obtained through experiments. For a specific flooding data set, 35 optimal input factors of the prediction model are determined, the optimal number of training samples is 1-minute interval data, and the optimal forecast period is 60 minutes.
(4) Designed an integrated learning method based on the combination of Bayesian model (BMC-EL) to predict flooding with a 60-minute forecast period. First, the flood intensity classification and K-fold cross-checking are introduced to generate multiple training subsets from the training set to achieve uniform sampling and increase the diversity of the subsets. Secondly, the BP neural network and random forest are used as the base learner to build the prediction model, and then import the training subset for training. Finally, according to the prediction performance of the base learner on the verification set, a Bayesian model combination strategy is formulated, and the predicted values on the test set are integrated and output. Research shows that compared with linear regression, linear support vector machine, quadratic support vector machine, BP neural network, and random forest, BMC-EL is the optimal model with a maximum water depth prediction error of 0.2m, which is significantly better than other models. The prediction accuracy rate on the flooding level is used to evaluate the reliability of the model. The reliability of BMC-EL is at least 65.31% of level 2, and the reliability of the other levels is above 80%. The prediction performance of the BMC-EL model is very stable, and the prediction output can provide effective guidance for city managers to issue flood warnings.
2021
中文
162
致 謝 I
摘要 III
Abstract V
目 錄 VII
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1 研究背景和意義 1
1.1.1 變化環境下城市水浸災害加劇 1
1.1.2 大數據及AI技術推進水浸研究 4
1.2 研究問題 7
1.3 研究目的 8
1.4 研究方法 9
1.5 研究技術路線 10
1.6 研究創新 10
1.7 章節安排 12
第二章 文獻綜述 15
2.1 城市水浸 15
2.1.1 城市 15
2.1.2 沿海城市 16
2.1.3 城市水浸災害 18
2.1.3.1 城市水浸災害類型 18
2.1.3.2 城市水浸災害系統構成 19
2.1.3.3 城市水浸災害系統特徵 23
2.1.3.4 沿海城市水浸預測因子 26
2.2 基於城市雨洪管理模型的水浸預測 27
2.2.1 城市雨洪管理模型 27
2.2.1.1 InfoWorks CS模型 28
2.2.1.2 SWMM 模型 28
2.2.2 基於城市雨洪管理模型的水浸預測 29
2.3 基於時間序列分析的水文預測 31
2.3.1 時間序列及其預測 31
2.3.2 水文時間序列 32
2.3.3 基於時間序列預測模型的水文預測 33
2.3.4 基於神經網路的水文預報 34
2.3.5 基於改進機器學習模型的水文預報 36
2.4 沿海城市的水浸預測 37
2.4.1 IoT系統在城市水浸的應用 37
2.4.2 沿海城市的水浸預測 40
2.5 研究述評 41
2.6 本章小結 42
第三章 研究方法 44
3.1 數據預處理方法 44
3.1.1 時間序列數據丟失分類 44
3.1.2 處理長時丟失數據 45
3.1.3 填補一維暫態丟失數據 47
3.1.4 填補多維短時丟失數據 48
3.2 澳門水浸數據預處理 51
3.2.1 澳門水浸概況 51
3.2.2 澳門水浸數據 53
3.2.2.1 水浸高度數據 53
3.2.2.2 城市氣象數據 56
3.2.2.3 颱風最佳路徑數據 56
3.2.2.4 近海天文潮數據 60
3.2.2.5 近海風暴潮數據 63
3.3 預測方法 63
3.3.1 預測理論與方法 63
3.3.2 神經網路 64
3.3.3 集成學習 66
3.3.3.1 Boosting 66
3.3.3.2 Bagging 68
3.3.3.3 結合策略 69
3.3.4 預測性能評價指標 72
3.3.4.1 確定性係數 72
3.3.4.2 均方误差 72
3.3.4.3 平均絕對誤差 72
3.3.4.4 均方根誤差 73
3.4 本章小結 73
第四章 研究結果 74
4.1 數據構成與分析 74
4.1.1 澳門水浸數據集的構成 74
4.1.2 澳門典型水浸數據 77
4.1.2.1 “天鴿”水浸數據 77
4.1.2.1 “山竹”水浸數據 78
4.1.3 澳門水浸數據分析 80
4.1.3.1 水浸數據的特徵 80
4.1.3.2 水浸因子數據的特徵 82
4.1.3.3 水浸與水浸因子的關係 84
4.2 BP神經網路預測 88
4.2.1 BP神經網路模型 88
4.2.2 討論與分析 91
4.2.2.1 水浸因子敏感性分析 91
4.2.2.2 訓練樣本數敏感性分析 100
4.2.2.2 不同預見期的預測分析 106
4.3 貝葉斯模型組合的集成學習預測 110
4.3.1 集成學習方法 111
4.3.1.1 模型的構建 111
4.3.1.2 BP神經網路基學習器 113
4.3.1.3 隨機森林基學習器 114
4.3.1.4 貝葉斯模型組合策略 116
4.3.1.5 參數設置 118
4.3.2 討論與分析 120
4.3.2.1 訓練子集的多樣性 120
4.3.2.2 預測精度 123
4.3.2.3 預測誤差 125
4.3.2.4 預測可靠性 128
4.3.2.5 消融實驗 133
4.4 本章小結 133
第五章 結論與展望 135
5.1 結論 135
5.2 局限性 138
5.3 研究展望 139
參考文獻 141
作者簡歷(讀博期間成果) 161
1.Abbott, M. B. (1999). Introducing hydroinformatics. Journal of hydroinformatics, 1(1), 3-19.
2.Abou Rjeily, Y., Abbas, O., Sadek, M., Shahrour, I., & Hage Chehade, F. (2017). Flood forecasting within urban drainage systems using NARX neural network. Water Science and Technology, 76(9), 2401-2412.
3.Admiraal, H., & Cornaro, A. (2020). Future cities, resilient cities – The role of underground space in achieving urban resilience. Underground Space, 5(3), 223-228.
4.Agnieszka, I. O., tJoanne, C., Stephen, N., Michael, H. (2017). High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example. Coastal Engineering, 121, 278-296.
5.Atitallah, S. B., Driss, M., Boulila, W., & Ghézala, H. B. (2020). Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Computer Science Review, 38, 100303.
6.Berkhahn, S., Fuchs, L., & Neuweiler, I. (2019). An ensemble neural network model for real-time prediction of urban floods. Journal of Hydrology, 575, 743-754.
7.Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustainable cities and society, 38, 230-253.
8.Blu, T., Thévenaz, P., & Unser, M. (2004). Linear interpolation revitalized. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 13(5), 710.
9.Carlson, K., Chowdhury, A., Kepley, A., Somerville, E., Warshaw, K., & Goodall, J. (2019, 26-26 April 2019). Smart Cities Solutions for More Flood Resilient Communities. Paper presented at the 2019 Systems and Information Engineering Design Symposium (SIEDS).
10.Carlson, R. F., Maccormick, A. J. A., & Watts, D. G. (1970). Application of Linear Random Models to Four Annual Streamflow Series. Water Resources Research, 6(4), 1070-1078.
11.Chang, C.-H., Chung, M.-K., Yang, S.-Y., Hsu, C.-T., & Wu, S.-J. (2018). A Case Study for the Application of an Operational Two-Dimensional Real-Time Flooding Forecasting System and Smart Water Level Gauges on Roads in Tainan City, Taiwan. Water, 10(5).
12.Chang, F.-J., Chen, P.-A., Lu, Y.-R., Huang, E., & Chang, K.-Y. (2014). Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 517, 836-846.
13.Chang, L.-C., Shen, H.-Y., & Chang, F.-J. (2014). Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology, 519, 476-489.
14.Chang, L.-C., Shen, H.-Y., Wang, Y.-F., Huang, J.-Y., & Lin, Y.-T. (2010). Clustering-based hybrid inundation model for forecasting flood inundation depths. Journal of Hydrology, 385(1), 257-268.
15.Chen, A. S., Evans, B., Djordjević, S., & Savić, D. A. (2012). Multi-layered coarse grid modelling in 2D urban flood simulations. Journal of Hydrology, 470-471, 1-11.
16.Chen, C., Hui, Q., Xie, W., Wan, S., Zhou, Y., & Pei, Q. (2021). Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city. Computer Networks, 186, 107744.
17.Chen, W., Huang, G., Han, Z., & Wang, W. (2018). Urban inundation response to rainstorm patterns with a coupled hydrodynamic model: A case study in Haidian Island, China. Journal of Hydrology, 564, 1022-1035.
18.Chen, Y., & Han, D. (2016). Big data and hydroinformatics. Procedia Engineering, 154, 184-191.
19.Clarke, B. (2003). Comparing Bayes Model Averaging and Stacking When Model Approximation Error Cannot be Ignored. Journal of Machine Learning Research, 4(4), 683-712.
20.CMA. (2020). CMA best path dataset. Retrieved from http://tcdata.typhoon.org.cn/index.html
21.D., C. (1999). Natural hazards, 2nd edn. Singapore [Press release]
22.Dodangeh, E., Choubin, B., Eigdir, A. N., Nabipour, N., Panahi, M., Shamshirband, S., & Mosavi, A. (2020). Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of The Total Environment, 705, 135983.
23.Duncan, A. (2015). The Analysis and Application of Artificial Neural Networks for Early Warning Systems in Hydrology and the Environment.
24.Duncan, A. P., Chen, A. S., Keedwell, E. C., Djordjevic, S., & Savic, D. A. (2012). Urban flood prediction in real-time from weather radar and rainfall data using artificial neural networks. Paper presented at the WEATHER RADAR AND HYDROLOGY.
25.Fletcher, T. D., Andrieu, H., & Hamel, P. (2013a). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51(JAN.), 261-279.
26.Fletcher, T. D., Andrieu, H., & Hamel, P. (2013b). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51, 261-279.
27.Gaucherel, C. (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of Hydrology, 269(3), 101-121.
28.Gironás, J., Roesner, L. A., Rossman, L. A., & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software, 25(6), 813-814.
29.Grünthal, G., Thieken, A. H., Schwarz, J., Radtke, K. S., Smolka, A., & Merz, B. (2006). Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes. Natural Hazards, 38(1-2), 21-44.
30.Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2012). Internet of Things: A vision, architectural elements, and future directions. Future Gen. Comp. Syst. J, 29(7), 1645.
31.Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3(9), 802-806.
32.Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36(5), 748-758. doi:https://doi.org/10.1016/j.ijinfomgt.2016.05.002
33.Hongtao, N. (2020). Smart safety early warning model of landslide geological hazard based on BP neural network. Safety Science, 123. doi:10.1016/j.ssci.2019.104572
34.House, & Lisa. (2000). Bainbridge Festive Foods. Review of Agricultural Economics.
35.Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11).
36.Jhong, B.-C., Wang, J.-H., & Lin, G.-F. (2017). An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. Journal of Hydrology, 547, 236-252.
37.Joss, S., & Molella, A. P. (2013). The Eco-City as Urban Technology: Perspectives on Caofeidian International Eco-City (China). Journal of Urban Technology, 20(1), 115-137.
38.Karyotis, C., Maniak, T., Doctor, F., Iqbal, R., & Tang, R. (2019). Deep Learning for Flood Forecasting and Monitoring in Urban Environments. Paper presented at the IEEE International Conference on Machine Learning and Applications ICMLA 2019.
39.Khan, U. T., He, J., & Valeo, C. (2017). River flood prediction using fuzzy neural networks: an investigation on automated network architecture. Water Science & Technology, wst2018107.
40.Krogh, A., & Vedelsby, J. (1995). Neural Network Ensembles, Cross Validation, and Active Learning. Paper presented at the International Conference on Neural Information Processing Systems.
41.Li, M., Yang, D., Chen, J., & Hubbard, S. S. (2012). Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework. Water Resources Research, 48(8).
42.Lo, S.-W., Wu, J.-H., Lin, F.-P., & Hsu, C.-H. (2015). Visual Sensing for Urban Flood Monitoring. Sensors, 15(8).
43.M.H.Hsu, S.H.Chen, & T.J, C. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology, 234(1-2), 21-37.
44.Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S. B., & Djordjević, S. (2004). Potential and limitations of 1D modelling of urban flooding. Journal of Hydrology, 299(3), 284-299.
45.Meyers, S. D., Landry, S., Beck, M. W., & Luther, M. E. (2021). Using logistic regression to model the risk of sewer overflows triggered by compound flooding with application to sea level rise. Urban Climate, 35, 100752.
46.Mignot, E., Paquier, A., & Haider, S. (2006). Modeling floods in a dense urban area using 2D shallow water equations. Journal of Hydrology, 327(1), 186-199.
47.Miller, N. L., Hayhoe, K., Jin, J., & Auffhammer, M. (2008). Climate, Extreme Heat, and Electricity Demand in California. Journal of Applied Meteorology & Climatology, 47(6), 1834-1844.
48.Mitra, P., Ray, R., Chatterjee, R., Basu, R., Saha, P., Raha, S., Saha, S. (2016, 13-15 Oct. 2016). Flood forecasting using Internet of things and artificial neural networks. Paper presented at the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON).
49.Monteith, K., Carroll, J. L., Seppi, K., & Martinez, T. (2011, 31 July-5 Aug. 2011). Turning Bayesian model averaging into Bayesian model combination. Paper presented at the The 2011 International Joint Conference on Neural Networks.
50.Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10(11), 1536.
51.Motta, M., de Castro Neto, M., & Sarmento, P. (2021). A mixed approach for urban flood prediction using Machine Learning and GIS. International Journal of Disaster Risk Reduction, 102154.
52.Mounce, S. R., Shepherd, W., Sailor, G., Shucksmith, J., & Saul, A. J. (2014). Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Science & Technology, 69(6), 1326-1333.
53.Munandar, A., Fakhrurroja, H., Rizqyawan, M. I., Pratama, R. P., Wibowo, J. W., & Anto, I. A. F. (2017, 23-24 Oct. 2017). Design of real-time weather monitoring system based on mobile application using automatic weather station. Paper presented at the 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-­Mechanical System, and Information Technology (ICACOMIT).
54.Napolitano, G., Serinaldi, F., & See, L. (2011). Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. Journal of Hydrology, 406(3-4), 199-214.
55.Nguyen, D. H., & Bae, D.-H. (2020). Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network. Journal of Hydrology, 584, 124710.
56.Noh, S. J., Lee, J.-H., Lee, S., Kawaike, K., & Seo, D.-J. (2018). Hyper-resolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization. Environmental Modelling & Software, 103, 131-145.
57.Nott, J. (2006). Extreme events: A physical reconstruction and risk assessment. John Wiley & Sons, Inc.
58.Owen, & G. (2014). Book review: Environmental Hazards: Assessing Risk and Reducing Disaster. HOLOCENE -SEVENOAKS-.
59.Pathan, A. I. (2020). An IoT and AI based Flood Monitoring and Rescue System. International Journal of Engineering & Technical Research, V9(9).
60.Rana, I. A., Jamshed, A., Younas, Z. I., & Bhatti, S. S. (2020). Characterizing flood risk perception in urban communities of Pakistan. International Journal of Disaster Risk Reduction, 46, 101624.
61.René, J.-R., Djordjević, S., Butler, D., Madsen, H., & Mark, O. (2014). Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability. Urban Water Journal, 11(7), 573-583.
62.Retamar, A. E., Guba, G., Lopez, G. V., Paler, H. B., Javier, J., Garcia, F. C. C., Yabut, J. J. (2017, 19-22 Oct. 2017). HydroMet: Deployment of a large scale nationwide hydrometeorological sensor network for flood warning and monitoring. Paper presented at the 2017 IEEE Global Humanitarian Technology Conference (GHTC).
63.Rubinato, M., Shucksmith, J., Saul, A. J., & Shepherd, W. (2013). Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system. Paper presented at the International Conference on Urban Drainage Modelling.
64.Sadler, J., Goodall, J., Morsy, M., & Spencer, K. (2018). Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. Journal of Hydrology, 559, 43-55.
65.Simon, B., Lothar,F. & Insa,N. (2019). An ensemble neural network model for real-time prediction of urban floods. Journal of Hydrology, 575, 743-754.
66.Solomantine, D. P. O., A. (2008). Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics, 10(1), 3-22.
67.Sood, S. K., Sandhu, R., Singla, K., & Chang, V. (2018). IoT, big data and HPC based smart flood management framework. Sustainable Computing: Informatics and Systems, 20, 102-117.
68.Sovzil, D., Kvasnicka, V. & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43-62.
69.T.-Y., P., J.-S., L., T.-J., C., H.-K., C., K.-C., C., & Y.-C., T. (2011). Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database. Natural hazards and earth system sciences, 11(3), 771-787.
70.Tripathi, R., Sengupta, S. K., Patra, A., Chang, H., & Jung, I. W. (2014). Climate change, urban development, and community perception of an extreme flood: A case study of Vernonia, Oregon, USA. Applied Geography, 46, 137-146.
71.Wang, Y., Chen, X., Wang, L., & Min, G. (2020). Effective IoT-Facilitated Storm Surge Flood Modeling Based on Deep Reinforcement Learning. IEEE Internet of Things Journal, 7(7), 6338-6347.
72.Wu, X., Wang, Z., Guo, S., Liao, W., Zeng, Z., & Chen, X. (2017). Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. Journal of Hydrology, 547, 428-442.
73.Wu, Z., Zhou, Y., Wang, H., & Jiang, Z. (2020). Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of The Total Environment, 716, 137077.
74.Y.Wang, H., Zhang, Z. X., & Liu, L. M. (2020). Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network. Journal of Manufacturing Processes.
75.Yan-Wei, L. I., You, X. Y., Min, J. I., Wang, X. D., Zhao, L. J., & Pan, L. M. (2010). Optimization of Rainwater Drainage System Based on SWMM Model. China Water & Wastewater.
76.Yan, K. (2015). Low-cost Space-borne Data for Inundation Modelling: Topography, Flood Extent and Water Level.
77.Yen-Ming, C., Chang, L. C., Meng-Jung, T., Wang, Y. F., & Chang, F. J. (2010). Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. Hydrology & Earth System Sciences, 14(7), 2317-2345.
78.Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, & D. Chen. (2014). An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 31, 287-301.
79.Yousef, A., Seyed, H. K. & Morteza, O. (2019). Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network. Measurement, 147.
80.Youssef, A. M., Pradhan, R., & Hassan, R. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611-623.
81.Zhang, J., Hou, G., Ma, B., & Hua, W. (2018). Operating characteristic information extraction of flood discharge structure based on complete ensemble empirical mode decomposition with adaptive noise and permutation entropy. Journal of Vibration and Control, 107754631775097.
82.Zhao, G., Pang, B., Xu, Z., Peng, D., & Xu, L. (2019). Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of The Total Environment, 659, 940-949.
83.Zhou, L., Wu, X., Ji, Z., & Gao, G. (2017). Characteristic analysis of rainstorm-induced catastrophe and the countermeasures of flood hazard mitigation about Shenzhen city. Geomatics Natural Hazards & Risk, 8(2), 1-12.
84.Zhuang, W. Y., Costa, M., Cheong, P., & Tam, K. W. (2011). Flood monitoring of distribution substation in low-lying areas using Wireless Sensor Network. Paper presented at the International Conference on System Science & Engineering.
85.鮑楓林. (2018). 基於深度信念網路的錢塘江潮位預報研究. 杭州電子科技大學,
86.曾凡慧. (2007). 城市化的現狀、問題與對策. 經濟研究導刊(4), 50-52.
87.曾照洋, 王兆禮, 吳旭樹, 賴成光, & 陳曉宏. (2017). 基於SWMM和LISFLOOD模型的暴雨內澇類比研究. 水力發電學報(05), 68-77.
88.陳夢園. (2018). 基於關聯規則和RBF神經網路的預測模型及教育應用研究. 華中師範大學,
89.初海波, 魏加華, 王東方, 李家葉, 黃躍飛, & 李鐵鍵. (2018). 基於預報因子聚類分級的日徑流預報深度信念模型及應用. 應用基礎與工程科學學報(5), 929-939.
90.大資料觀察. (2017.8). 阿裡雲“跑贏”烏雲 弘泰水利用大數據治水. Retrieved from 大資料觀察
91.馮書倉. (2016). 基於SWMM模型的滄州市城區內澇研究. 水利科技與經濟, 22(005), 92-95.
92.付志軍, 馮麗, 杜偉甯, 淩振寶, & 楊鳳芹. (2014). 離散粒子群優化演算法在流水作業調度問題中的應用. 吉林大學學報(理學版)(03), 561-564.
93.何嘉莉, 陳兵, 薑濤, & 林雨陽. (2014). 城市內澇線上監控與信息服務數位化系統設計. 中國給水排水, 030(001), 94-98.
94.胡文紅, & 孫欣欣. (2016). 基於時間序列的資料採擷技術在城市內澇災害中的應用研究. 科技通報, 32(006), 229-231,244.
95.黃國如. (2013). 城市雨洪模型及應用: 城市雨洪模型及應用.
96.黃國如, 王欣, & 黃維. (2017). 基於InfoWorks ICM模型的城市暴雨內澇類比. 水電能源科學, 035(002), 66-70.
97.紀昌明, 李榮波, 張驗科, 劉丹, 張培, & 杜拉. (2015). 基於小波分解的投影尋蹤自回歸組合模型及其在年徑流預測中的應用. 水力發電學報(07), 27-35.
98.蔣維. (2012). 城市化對水文要素影響分析及城市雨洪控制研究. 浙江大學,
99.蔣雲鐘, 冶運濤, & 趙紅莉. (2019). 智慧水利大資料內涵特徵、基礎架構和標準體系研究. 水利信息化, 000(004), 6-19.
100.經典中國編輯部. (2015.04). 經典中國 香港澳門: 中國旅遊出版社.
101.孔鋒. (2019). 透視變化環境下的中國城市暴雨水浸災害:形勢、原因與政策建議 (Vol. 50(10)): 水利水電技術.
102.李彬燁, 趙耀龍, & 付迎春. (2015). 廣州城市暴雨內澇時空演變及建設用地擴張的影響. 地球信息科學學報, 017(004), 445-450.
103.李鴻雁, 劉寒冰, 苑希民, & 劉樹坤. (2002). 人工神經網路峰值識別理論及其在洪水預報中的應用. 水利學報, 33(6), 15-20.
104.李思敏, 賴師美, 熊志剛, & 王庭翔. (2019). 基於衛星雲圖的1822號"山竹"颱風的結構變化和降水雲系特徵. 韶關學院學報(12), 49-53.
105.李正最. (2020). 論大資料背景下水文工作的創新與發展. 水利發展研究(3), 47-50.
106.林美霞. (2015). 基於海綿城市建設的廈門城市暴雨內澇災害風險研究. 西安科技大學,
107.林遠. (2015). 全國20省遇暴雨水浸災害. Retrieved from http://env.people.com.cn/n/2015/0702/c1010-27240379.html
108.權瑞松. (2012). 典型沿海城市暴雨內澇災害風險評估研究. (博士). 華東師範大學, Available from Cnki
109.桑燕芳, 王中根, & 劉昌明. (2012). 水文序列小波分析中分解層數選擇方法. 水文(04), 3-9+75.
110.邵堯明, & 邵丹娜. (2008). 城市暴雨積水過程的計算方法. 中國給水排水(06), 53-55.
111.邵月紅, 林炳章, 葉金印, 劉永和, SHAOYue-hong, LINBing-zhang, . . . LIUYong-he. (2014). 基於Elman動態神經網路的降雨—徑流類比研究. 大氣科學學報, 37(2), 223-228.
112.宋曉猛, 張建雲, 王國慶, 賀瑞敏, & 王小軍. (2014). 變化環境下城市水文學的發展與挑戰——Ⅱ.城市雨洪模擬與管理. 水科學進展, 25(5), 752-764.
113.宋耘, & 李瓊芳. (2019). 基於SWMM模型的南京典型易澇區暴雨內澇模擬. 水利水電科技進展, 039(006), 56-61.
114.孫娜. (2019). 機器學習理論在徑流智慧預報中的應用研究. 華中科技大學,
115.孫娜, 周建中, 朱雙, 李薇, & 彭甜. (2018). 基於小波分析的兩種神經網路耦合模型在月徑流預測中的應用. 水電能源科學, 36(4), 14-17.
116.孫欣欣. (2016). 城市突發水澇災害大資料分析技術研究. 科技通報, 032(004), 196-201.
117.覃光華, 丁晶, 李眉眉, & 倪長健. (2003). 敏感型人工神經網路及其在水文預報中的應用. 水科學進展, 14(2).
118.覃光華, 丁晶, & 劉國東. (2002). 自我調整BP演算法及其在河道洪水預報上的應用. 水科學進展, 013(001), 37-41.
119.譚維炎. (1998). 計算淺水動力學: 計算淺水動力學.
120.田中大, 高憲文, 李樹江, & 王豔紅. (2015). 遺傳演算法優化回聲狀態網路的網路流量預測. 電腦研究與發展(05), 1137-1145.
121.王建金, 石朋, 瞿思敏, 肖紫薇, 戴韻秋, 陳穎冰, & 陳星宇. (2016). 改進BP神經網路演算法在中小流域洪水預報中的應用研究. 西安理工大學學報, 32(004), 475-480.
122.王通. (2017.12). 城市雨水管理 理論、方法與措施: 華中科技大學出版社.
123.王衛平, 殷曉飛, WANGWei-ping, & YINXiao-fei. (2014). 基於GIS的水文資料智慧維護系統研究與設計. 測繪與空間地理信息(12), 50-52.
124.王文聖, 金菊良, & 丁晶. (2008). 隨機水文學: 隨機水文學.
125.王曉雅, 蔣衛國, 鄧越, & 蔣梓傑. (2019). "山竹"颱風影響地區的小時降雨動態變化及危險性動態評估. 災害學(3), 202-208.
126.王銀成, 王和, & 李秀芳副. (2014). 中國財產保險重大災因分析報告. 2010: 中國財產保險重大災因分析報告. 2010.
127.王彧坤, & 彭湘暉. (2008). 幾種常用插值方法此較分析. 黑龍江水利科技.
128.魏燕飛. (2015). 基於Infoworks CS和SWMM的城市雨洪模型應用研究. 華北水利水電大學,
129.溫克剛. (2006). 中國氣象災害大典,上海卷: 中國氣象災害大典,上海卷.
130.吳丹, 俞露, 李曉君, & 張亮. (2018). 基於海綿型生態節點的水生態系統規劃思考. Paper presented at the 共用與品質——2018中國城市規劃年會論文集(08城市生態規劃).
131.吳先華, 肖楊, 李廉水, & 王國傑. (2017). 大資料融合的城市暴雨內澇災害應急管理述評. 科學通報(09), 68-75.
132.吳有生, 唐洪武, & 王超. (2015). 第二十七屆全國水動力學研討會文集: 第二十七屆全國水動力學研討會文集.
133.夏軍, 張印, 梁昌梅, & 劉潔. (2018). 城市雨洪模型研究綜述. 武漢大學學報:工學版.
134.薛彥廣, 沙文鈺, 徐海斌, & 李少斐. (2005). 人工神經網路在風暴潮增水預報中的應用. 海洋預報, 022(002), 33-37.
135.于洪蕾. (2015). 極端氣候條件下我國濱海城市防災策略研究. 天津大學,
136.張建新, & 曹國榮. (2009). 國家水文資料庫建設技術研究: 國家水文資料庫建設技術研究.
137.張建雲, 劉九夫, & 金君良. (2019). 關於智慧水利的認識與思考. 水利水運工程學報, No.178(06), 3-9.
138.張建雲, 宋曉猛, 王國慶, 賀瑞敏, & 王小軍. (2014). 變化環境下城市水文學的發展與挑戰——I.城市水文效應. 水科學進展, 025(004), 594-605.
139.張靜, 史達偉, & 李超. (2018). 1713號颱風"天鴿"近海突變特徵及原因分析.
140.張立洪, & 武永新. (2017). 沿海城市潮、雨遭遇下內澇模型及應用. 水電能源科學, 035(006), 42-46.
141.張夢. (2019). 基於神經網路的城市內澇點降雨積水預測研究. 華南理工大學,
142.張學宏, 李顏, 郝培章, 曲傑, & 高文洋. (2008). 水文資料插值計算方法探討. 海洋預報, 25(001), 5-13.
143.章友德. (2004). 城市災害學: 城市災害學.
144.鄭輝. (2014). 南京市主城區暴雨內澇災害預報模擬. 南京信息工程大學,
145.鄭姍姍, 萬慶, & 賈明元. (2014). 基於STARMA模型的城市暴雨積水點積水短時預測<span>. 地理科學進展.
146.中國·深圳綜合開發研究院. (2017.05). 中國城市化和特大城市問題思考. 北京: 中國經濟出版社.
147.中國測繪學會. (2013.10). 中國測繪學科發展藍皮書(2012-2013卷): 測繪出版社.
148.中國災害防禦協會. (2015.01). 駕馭洪水猛獸: 科學普及出版社.
149.鐘登華, 劉東海, & Stefan, M. (2001). 水文預報的時間序列神經網路模型. 天津大學學報(英文版), 7(003), 182-186.
150.鐘登華, 王仁超, & 皮鈞. (1995). 水文預報時間序列神經網路模型. 水利學報(2期), 69-75.
151.周惠成, & 彭勇. (2007). 基於小波分解的月徑流預測校正模型研究. 系統模擬學報(05), 1104-1108.
152.周力寧. (2016). 基於SWMM的城市內澇風險識別研究. 西南交通大學,
153.周志華. (2016). 機器學習. 北京: 清華大學出版社.