本校學位論文庫
CITYU Theses & Dissertations
論文詳情
刘禹希
朱家偉
商學院
工商管理博士學位(DBA)課程(中文學制)
博士
2023
生命周期下多源資訊模型的財務危機預警研究
Research on Predication of Financial Distress and Corporate Failure Based on Enterprise Life Cycle Multisource Information Model
財務預警 ; 企業生命週期 ; Cox比例風險模型 ; Logistics回歸 ; BP神經網絡
Financial Warning ; Enterprise Life Cycle ; Cox Proportional Hazards Model ; Logistics Regression ; BP Neural Network
公開日期:21/6/2027
隨著我國經濟大門的打開,我國經濟社會發展進入了歷史的新時期,特別是進入到2000年後,我國不斷深入推進市場化改革,積極推動國有經濟佈局優化和結構調整,促進民營經濟高質量發展,大力推進市場體系的建立。在這個過程中,企業所面臨的發展壓力,競爭壓力也越來越大。特別是近幾年,美國經濟衰退,黃金價格瘋狂飆升,安哥拉“退圈”,地緣政治衝突不斷,在這些背景下,全球經濟負重前行,資本市場波折而複雜。而與此同時,我國近些年資本市場內的財務危機事件層出不窮,這些財務危機對投資人、債權人、證券監管和政府相關利益者的影響更是巨大的。
追溯歷史,財務危機的發生嚴重的影響著企業的運營,金融市場的穩定,甚至是國家和全球的經濟安全。如果可以提前預測出企業未來財務狀況的走向,給予管理者、投資人、債權人、政府等利益相關者及早的警示,使得利益相關者可以有針對性的進行風險規避,危機管控,那麼無論是對於企業自身生存發展還是對市場穩定性,社會安全性都將起到關鍵作用。因此財務預警研究成為了企業和投資者們十分關心的話題之一,也是海內外學者們高度重視的熱點研究課題。
從企業發展的角度來看,企業出現財務危機並不是突然發生或者瞬間爆發的,危機的產生往往是一個漸變過程。企業的財務狀況隨著發展時間和環境的改變在不斷發生變化,處於不同發展階段的企業具有不同的財務特質,因此造成財務危機的原因和影響因素也必然有所不同。不考慮企業發展階段特點,而使用同樣的預警變量進行危機預測,顯然不夠準確。因此,本研究從企業生命週期視角出發,將企業樣本劃分為成長期、成熟期和衰退期,以及全生命週期,結合相關學科研究理論,利用生存分析法中的Cox比例風險回歸、邏輯回歸分析法中的二元邏輯回歸法和人工神經網絡分析法中的BP神經網絡法,分別構建企業不同發展階段的預警模型和全生命週期下的預警模型進行預警效果比較分析,發現Logistic 回歸模型不適合分週期的預警研究,BP神經網絡模型在各個階段的總和誤判率最低,但第一錯誤率較高,Cox模型的第一錯誤率最低,且分周期預警交過穩定。
With the opening of China's economic door, China's economic and social development has entered a new era. Especially after entering the 2000s, China has continued to promote capital market reforms, the optimization of national economic allocation and structural settlement, the high-quality development of the private economy, and the establishment of the market system. Enterprises face more and more pressure of internal and external competitions. Especially in recent years, the global trade and investment are slowing under the U.S. economic recession, a rise in gold prices and geopolitical conflicts. At the same time, financial crisis events are endless in China’s capital market. The impact of the financial crisis on investors, creditors, securities regulators, and government is enormous, and the losses is immeasurable.
Tracing back the history, we can clearly realize that financial crisis has a huge impact on the operation of enterprises, the stability of the financial market, and even the national and global economic security. If the enterprises’ future financial trend could be predicted, managers, investors, creditors, government, and other stockholders could get warnings in advance. Stakeholders can reduce and avoid risks. Management can make management policies and control on crisis. Early warning will play a crucial role on survival and development of enterprise itself, stability of the capital market, and protection of social security. Financial early warning research has become one of the popular concerned topics for enterprises and stockholders. In addition, it is a hot research topic among scholars at home and abroad.
From the perspective of enterprise development, the enterprise financial crisis is not a sudden or instantaneous outbreak. The happening of crisis is often a gradual process. The financial positions of enterprises are constantly changing over time and in response to changing circumstances. Enterprises at different stages of development have different financial characteristics. The causes and influencing factors of financial crisis are different. It’s obviously not accurate enough to build the financial warning model with the same factors system.
From the perspective of enterprise’s life cycle, to establish scientific and effective financial early warning prediction models at different development stage. Based on the enterprise life cycle theory, the enterprise samples are divided into three stages: growth stage, maturity stage and decline stage in this study. This study builds Growth PCA-Cox model, Maturity PCA-Cox model, Decline PCA-Cox model, and Whole-Lifecycle PCA-Cox model, respectively. To compare the empirical analysis results, this study builds Logistic warning models and BP neural network warning models as well. After comparison and analysis, this study has explored that the Logistic regression model is not suitable for period-based early warning research, and the BP neural network model has the lowest mis-positive rate in each stage, but the first error rate is high. Cox model has the lowest first error rate and it is very suitable for period-based financial early warning research.
2024
中文
184
致 謝 I
摘 要 III
Abstract V
圖目錄 IX
表目錄 X
第一章 緒 論 1
1.1 研究背景與研究問題 1
1.1.1 研究背景 1
1.1.2 研究問題 5
1.2 研究目的及意義 7
1.2.1 研究目的 7
1.2.2 研究意義 8
1.3 研究範圍 10
1.4研究內容 10
1.5 研究限制 13
1.6研究框架 15
第二章 文獻研究 18
2.1 財務預警的研究現狀 18
2.1.1 財務危機界定的研究現狀 18
2.1.2 財務預警指標的研究現狀 22
2.1.3 財務危機預警方法的研究現狀 27
2.2 生命週期理論概述 39
2.2.1 生命週期理論的發展 39
2.2.2 企業生命週期的劃分 40
2.2.3企業生命週期階段數目的劃分 44
2.3 本章小結 47
第三章 研究方法及思路 48
3.1 研究方法 48
3.1.1 定性研究法 48
3.1.2 定量研究法 49
3.1.3 比較研究法 57
3.2 樣本公司的選擇 57
3.2.1 財務危機樣本公司的選擇 58
3.2.2 樣本公司選擇結果 60
3.3 財務指標的選擇 62
3.3.1 財務指標選擇的依據 62
3.3.2 財務指標初選擇的結果 63
3.4 樣本數據預處理 69
3.4.1 樣本數據的選取 69
3.4.2 數據的預處理 69
3.4.2.1 數據缺失值處理 69
3.4.2.2 數據標準化處理 70
3.5 財務指標確定 71
3.5.1 正態性檢驗(財務指標K-S檢驗) 72
3.5.2 顯著性檢驗 75
3.5.2.1兩獨立樣本非參數檢驗Mann-Whitney U檢驗 75
3.5.3 主成分分析 80
3.5.4 財務指標體系 90
3.6 本章小結 92
第四章 數據建模分析 93
4.1 生存分析法 93
4.1.1 Cox比例風險模型的設計 93
4.1.2 Cox比例風險模型的運算 95
4.1.3 成長期PCA-Cox財務預警模型 96
4.1.4 成熟期PCA-Cox財務預警模型 100
4.1.5 衰退期PCA-Cox財務預警模型 103
4.1.6 企業完全發展週期下的PCA-Cox財務預警模型 106
4.2 邏輯回歸分析 114
4.2.1 二元邏輯(Logistics)回歸模型的設計和運算 115
4.2.2 成長期PCA-Logistic財務預警模型 117
4.2.3 成熟期PCA-Logistic財務預警模型 122
4.2.4衰退期PCA-Logistic財務預警模型 127
4.2.5企業完全發展週期下的PCA-Logistic財務預警模型 132
4.3 人工神經網絡分析 138
4.3.1 三層BP神經網絡的演算法和流程 139
4.3.2 不同生命週期下BP神經網絡法下的預警模型檢驗 141
4.3.3 全生命週期下BP神經網絡法下的預警模型檢驗 147
4.4對比分析 149
4.5本章小結 153
第五章 研究結論與展望 155
5.1 主要研究結論 155
5.2 政策建議 157
5.3 研究不足和展望 159
參考文獻 163
作者簡歷 180
附 錄 181
1. Almamy, J., Aston, J., Ngwa, L. N., Finance, J. O. C., Poulsen, A., & Netter, J. . (2016). An evaluation of altman's z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: evidence from the uk.
2. Altman, E. I.. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
3. Altman, E. I., & Brenner, M. (1981). Information Effects and Stock Market Response to Signs of Firm Deterioration. Journal of Financial and Quantitative Analysis, 16(1), 35–51.
4. Altman, E. I., Marco, G., & Varetto, F.. (1994). Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the italian experience). Journal of Banking & Finance, 18(3), 505-529.
5. Alves, J.R. (1978). The prediction of small business failure utilizing financial and nonfinancial data.
6. Argenti, J. (1976). Corporate Collapse: The Causes and Symptoms. Holsted Press, McGraw-Hill, London.
7. Aziz, A., Emanuel, D. C., & Lawson, G. H. . (1988). Bankruptcy prediction - an investigation of cash flow based models. Journal of Management Studies, 25(5).
8. Beaver, W. H. (1966). Financial ratios and predictions of failure. Journal of Accounting Research, 4(4), 71 - 111.
9. Beaver, W. H. (1968). Alternative Accounting Measures as Predictors of Failure. The Accounting Review, 43(1), 113–122.
10. Beaver, W.H., Mcnichols, M. F., and Rhie, J. W.(2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, (10), 93-122.
11. Beynon, M. J., & Peel, M. J. . (2009). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29(6), 561-576.
12. Bhagat, S., & Bolton, B. J. . (2010). Investment bankers' culture of ownership?. Ssrn Electronic Journal.
13. Blum, M.. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1).
14. Bose, I. . (2006). Deciding the financial health of dotcoms using rough sets. Information & Management, 43(7), 835-846.
15. Catanach, A.H., & Perry, S.E. (2001). An Evaluation of the Survival Model's Contribution to Thrift Institution Distress Prediction . Journal of Managerial Issues, 13, 401.
16. Dai Y., & Yu C.. (2022). Financial Risk Early-Warning of Neusoft Group Based on Support Vector Machine. Complexity. doi:10.1155/2022/5878047.
17. Carmichael, D. R. . (1972). The auditor's reporting obligation: the meaning and implementation of the fourth standard of reporting.
18. Celik, A. E. & Karatepe, Y.. (2007). evaluating and forecasting banking crises through neural network models: an application for Turkish banking sector. Expert Systems with Application, 33(4), 809-815.
19. Ch. B. Balan,I.-B. Robu & E. Jaba. (2015). The statistical assessment of financial distress risk in the case of metallurgical companies. Metalurgija, (3).
20. Chaudhuri, A., & De, K.. (2011). Fuzzy support vector machine for bankruptcy prediction. Applied Soft Computing Journal, 11(2), 2472-2486.
21. Çinar, E.M., Lash, N.A., & Salchenberger, L. (1992). Neural Networks: A New Tool for Predicting Thrift Failures. Neuroeconomics e Journal.
22. Clark, T. & Weinstein, M. (1983). The behavior of the common stock of bankrupt firms. Journal of Finance, 38: 489-504.
23. Coast, Fant. (1993). Managing Financial Distress and Valuing Distressed Securities. 1993 (2), 60-77.
24. Coats P K, & Fant L F. (1993). Recognizing financial distress patterns using a neural network tool. Financial management, 142-155.
25. Deakin, E. B. (1972). A Discriminant Analysis of Predictors of Business Failure. Journal of Accounting Research, 10(1), 167–179.
26. Dewaelheyns, N., & Van hulle, C. (2006). Corporate Failure Prediction Modeling: Distorted by Business Groups' Internal Capital Markets? Risk Management, (13).
27. Dickinson, V. . (2011). Cash flow patterns as a proxy for firm life cycle. The Accounting Review, 86(6), 1969-1994.
28. Dimitras, A. I. , Zanakis, S. H. , & Zopounidis, C. . (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513.
29. Dimitras, A., Słowiński, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. Eur. J. Oper. Res., 114, 263-280.
30. Edmister, R. O. . (1988). Combining human credit analysis and numerical credit scoring for business failure prediction. Akron business and economic review, 19(3), 6-14.
31. Fan, A. & Palaniswami, M..(2000). Selecting Bankruptcy Predictors Using a Support Vector Machine Approach. International Joint Conference on Neural Networks, (6), 354-359.
32. Fitzpatrick, P. J. . (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies. Análise Molecular Do Gene Wwox, 598-605.
33. Foster, G.. (1986). Financial statement analysis. Prentice-Hall Englewood Cliffs, NJ.
34. Frydman, H., Altman, E. I., & Kao, D.-L. (1985). Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 40(1), 269–291.
35. Gentry, J. A. , Newbold, P. , & Whitford, D. T. . (1984). Bankruptcy, working capital and funds flow components. Managerial Finance, 10(3), 26-39.
36. Gibson, C. H. , & Frishkoff, P. A. .(1990). Financial statement analysis. Journal of education finance.
37. Gibson, C. H. . (1997). Financial Statement Analysis: Using Financial Accounting Information. College Div. South-Western Pub. Co.
38. Gilson, S. C. . (1989). Management turnover and financial distress. Journal of Financial Economics.
39. Gort, M. , & Klepper, S. . (1982). Time paths in the diffusion of product innovations. Economic Journal, (367), 630-653.
40. Goulet, P. , & Foster, G. . (1980). Financial statement analysis. The Journal of Finance, 35(4), 1057.
41. Healy, J. D. (1987). A Note on Multivariate CUSUM Procedures. Technometrics, 29(4), 409–412.
42. Hopwood, W., McKeown, J., & Mutchler, J. (1989). A Test of the Incremental Explanatory Power of Opinions Qualified for Consistency and Uncertainty. The Accounting Review, 64(1), 28–48.
43. Jabeur, S. B. . (2017). Bankruptcy prediction using partial least squares logistic regression. Journal of Retailing and Consumer Services, 36, 197-202.
44. James, & Scott. (1981). The probability of bankruptcy: a comparison of empirical predictions and theoretical models. Journal of Banking & Finance.
45. Jian, Y.. (2022). Research on enterprise financial economics early warning based on machine learning method. Journal of Computational Methods in Sciences and Engineering, (2). doi:10.3233/JCM-215783.
46. Khoury, D. S. J. . (1980). Ratio stability and corporate failure. Journal of Finance, 35(4), 1017-1026.
47. Laitimen, E. K.. (1993). Financial predictors for different phases of the failure process. Omega, 21(2), 215-228.
48. Lane, W. R. , Looney, S. W. , & Wansley, J. W. . (2010). An application of the cox model to bank failure. Financial Review, 20(3), 73-73.
49. Lin F, Liang D, Yeh CC, & Huang JC. (2014). Novel feature selection methods to financial distress prediction. Expert Systems with Applications, (41) 5, 2472-2483.
50. Ling Zhang, Edward I. Altman & Jerome Yen. (2010). Corporate financial distress diagnosis model and application in credit rating for listing firms in China. Frontiers of Computer Science in China, (2).
51. Liu M. M.. (2006). Accruals and managerial operating decisions over the firm life cycle. Small College of Business, Pennsylvania State University.
52. Liu H.. (2022). Financial Risk Intelligent Early Warning System of a Municipal Company Based on Genetic Tabu Algorithm and Big Data Analysis. International Journal of Information Technologies and Systems Approach (IJITSA), (3).
53. Martin, D.. (1997). Early warnings of bank failures. Journal of Banking and Finance, (1), 249-276.
54. McKee, T.E., & Greenstein, M.M. (2000). Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of Forecasting, 19, 219-230.
55. Mensah, Y.M. (1984). An examination of the stationarity of the multivariate bankruptcy prediction of models – a methodological study. Journal of Accounting Research, 22, 380-395.
56. Odom, R. & Sharda, F. M.. (1990). A bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network. Expert Systems with Applications, (12), 139-154.
57. Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109–131.
58. Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109–131.
59. Ooghe, H. , & Prijcker, S. D. . (2008). Failure processes and causes of company bankruptcy: a typology. Management Decision, 46(1-2), p.223-242.
60. Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100–115.
61. Platt H D , Platt M B , Pedersen J G. Bankruptcy discriminant with real variables [J ] . Journal of Business Finance and Accounting, 1994, 21(4) :4912508.
62. Pawlak, Z. (1982). International journal of information and computer sciences. Rough Sets, (11), 341-356.
63. Powell, R.J., Dinh, D.V., Vu, N.T., & Vo, D.H. (2023). Accounting‐based variables as an early warning indicator of financial distress in crisis and non‐crisis periods. International Journal of Finance & Economics.
64. Rafiei F. S., Manzari M. & Bostanian S. (2011). Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 38(8), 10210-10217.
65. Ravisankar, P., Ravi, V., & Bose, I.. (2010). Failure prediction of dotcom companies using neural network - genetic programming hybrids. Information Sciences, 180(8), 1257-1267.
66. Richardson, F.M., Kane, G.D., & Lobingier, P.G. (1998). The Impact of Recession on the Prediction of Corporate Failure. Journal of Business Finance & Accounting, 25, 167-186.
67. Ross B.. (2000). Financial ratios and different failure processes. Journal of Business Finance, (3), 18-24.
68. Ross, S. A., Westerfield, R. W., & Jaffe, J. F.. (1995). Finanzas corporativas. Mexico: Irwin.
69. Salchenberger, L. M., Cinar, E. M., & Lash, N. A.. (1992). Neural Networks: a new tool for predicting thrift failures. Decision Sciences, 23, 899-916.
70. Scott James. (1981). The probability of bankruptcy: A comparison of empirical predictions and theoretical models. Journal of Banking & Finance, (3).
71. Shin, K., Lee, T.S., & Kim, H. (2005). An application of support vector machines in bankruptcy prediction model. Expert Syst, (28), 127-135.
72. Slowinski, R. , & Zopounidis, C. . (1995). Application of the rough set approach to evaluation of bankruptcy risk. Intelligent Systems in Accounting, Finance and Management, 4.
73. Smith, R. F. , & Winakor, A. H. . (1935). Changes in the Financial Structure of Unsuccessful Corporations.
74. Song Xiaoling,Jing Yage & Qin Xuan. (2023). BP neural network-based early warning model for financial risk of internet financial companies. Cogent Economics & Finance, (1).
75. Sudheer, C. , & Jarrow, R. A. . Bankruptcy prediction with industry effects. Review of Finance, (4), 4.
76. Sun, J. , Li, H. , Huang, Q. H. , & He, K. Y. . (2014). Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57(feb.), 41-56.
77. Theodossiou, P. T. (1993). Predicting Shifts in the Mean of a Multivariate Time Series Process: An Application in Predicting Business Failures. Journal of the American Statistical Association, 88(422), 441–449.
78. Van Gestel, T. , Baesens, B. , Suykens, J. A. K. , Espinoza, M. , Baestaens, D. E. , & Vanthienen, J. , et al. (2003). Bankruptcy prediction with least squares support vector machine classifiers. IEEE International Conference on Computational Intelligence for Financial Engineering. IEEE.
79. Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking and Finance, 22, 1421-1439.
80. Verikas, A. , Kalsyte, Z. , Bacauskiene, M. , & Gelzinis, A. . (2010). Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 14(9), 995-1010.
81. Ward T J, & Foster B P. (1997). A note on selecting a response measure for financial distress. Journal of Business Finance & Accounting, 24(6), 869-879.
82. Xiao, Z. , Yang, X. , Pang, Y. , & Dang, X. . (2012). The prediction for listed companies' financial distress by using multiple prediction methods with rough set and dempster–shafer evidence theory. Knowledge-Based Systems, 26, 196-206.
83. Yang, Z.R., Platt, M.B., & Platt, H.D. (1999). Probabilistic Neural Networks in Bankruptcy Prediction. Journal of Business Research, 44, 67-74.
84. Yu C. (2012). Financial distress prediction with classifier ensembles based on firm life cycle and Choquet integral. Expert Systems with Applications, (39), 7041-7049.
85. Zmijewski, M.E. 1984. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22 (Supplement), 59-82.
86. Zhang H., & Luo Y.. (2022). Enterprise Financial Risk Early Warning Using BP Neural Network Under Internet of Things and Rough Set Theory. Journal of Interconnection Networks, (03).
87. Ziarko, W.P. (1993). Variable Precision Rough Set Model. J. Comput. Syst. Sci., 46, 39-59.
88. 方潔, 潘海英, & 顧超超. (2017). 不同生命周期中小企業財務危機預警研究. 財會月刊, (14), 39-43.
89. 毛付根. (2000). 多元化经营的陷阱——巨人集团失败的财务分析. 财务与会计, 000(002), 17-20.
90. 王秀麗, 張天龍, & 賀曉霞. (2017). 基於合併報表與母公司報表的財務危機預警效果比較研究. (06), 38-44+96.
91. 王炳成. (2011). 企業生命周期研究述評. 技術經濟與管理研究, (04), 52-55.

92. 王紅春, 靳斌, 樊旭升, & 馬士明. (2008). 基於神經網絡的脫機中文簽名鑒別系統的研究. 計算機應用, (09), 2389-2391.
93. 王逸欣. (2019). 企業生命周期視角下財務危機預警分析. 佳木斯職業學院學報, (01), 259-260.
94. 田宝新, & 王建琼. (2017). 基于财务与非财务要素的上市公司财务困境预警实证研究. 金融评论, 9(5), 13.
95. 田高良, 蒋昆, & 胡凯. (2002). 上市公司财务危机实时预警系统研究. 当代经济科学, 24(4), 6.
96. 石先兵. (2020). 基於pca-svm的企業財務危機預警模型構建. 財會通訊, (10), 4.
97. 刘旻, & 罗慧. (2004). 上市公司财务危机预警分析--基于数据挖掘的研究. 数理统计与管理, 23(3), 7.
98. 刘芳, & 陈浩. (2009). 纳入eva及非财务指标的信贷风险综合预警系统模型. 价值工程, 28(7), 4.
99. 刘翰林, 张友棠, & 彭颖. (2016). 基于现金流的上市公司财务预警研究——以信息技术业为例. 财会通讯, (31), 24-27.
100. 孙奕驰, & 张艺馨. (2011). 上市公司治理风险预警研究——基于时依协变量的cox模型. 会计之友, (5), 3.
101. 朱乃平. (2008). 中達股份財務危機案例剖析. 財務與會計, (03), 6-7.
102. 朱少平, & 葛毅. (2000). 中華人民共和國破產法 —— 立法進程資料彙編. 北京:中信出版社.
103. 朱榮. (2007). 對財務風險的多維度視角審視及評析. 海南金融, (02),86-88.
104. 朱濱峰, 徐桂雲, 李俊敏, & 祈雋燕. (2007). 虛擬儀器設計中壓力感測器的bp神經網路溫度非線形校正. 儀器儀錶標準化與計量, (1), 3.
105. 任婷婷, 魯統宇, & 崔俊. (2021). 基于改進AdaBoost算法的動態不平衡財務預警模型. 數量經濟技術經濟研究, (11), 182-197.
106. 吳世農, & 盧賢義. (2001). 我國上市公司財務困境的預測模型研究. 經濟研究, (6), 10.
107. 吳世農, & 陳智瑜. (2023). 基于財務和非財務信息的債券違約預警模型研究——來自機器學習方法的經驗證據. 廈門大學學報(哲學社會科學版), (06), 108-121.
108. 吳星澤. (2011). 財務危機預警研究:存在問題與框架重構. 會計研究, (02), 59-65+97.
109. 吳春燕, & 幹勝道. (2011). 影響財務危機預警的現金增量指標研究. 中國證券期貨, (9), 100.
110. 呂長江, 徐麗莉, & 周琳. (2004). 上市公司財務困境與財務破產的比較分析. 經濟研究, (8), 64-73.
111. 宋宇, 秦學志, & 李鴻禧. (2019). 基于Cox回歸的中小企業財務預警模型及實證. 管理現代化, (01),108-110.
112. 宋常, 劉司慧. (2011). 中國企業生命周期階段劃分及其度量研究. 商業研究, (01),1-10.
113. 宋新平, 丁永生, & 曾月明. (2009). 基於遺傳演算法的同步優化方法在財務困境預警中的應用. 預測, (01),48-55.
114. 张春香, & 张百舸. (2018). 新创高科技企业声誉对其风险投资获得时间的影响——基于cox比例风险模型的实证分析. 技术经济与管理研究, (9), 5.
115. 李秉承. (2004). 企業財務困境研究 —— 上市公司財務困境實證分析.北京: 北京中國財政經濟出版社.
116. 李英利, & 譚夢卓. (2019). 會計信息透明度與企業價值——基于生命周期理論的再檢驗. 會計研究, (10),27-33.
117. 李軍, 史娟, 朱春華, 吳松, 張海鵬, 蒲小曼, & 李凌. (2021). “一中心三管控一評價”新型財務風險防控體系. 創新世界周刊, (12), 55-59.
118. 李健, & 劉翔. (2011). 借助遺傳神經網絡開展上市公司財務危機預警.財會月刊, (03),56-59.
119. 李賀, 馮天瑾, & 王樹文. (2005). 一種基於svm的多變數企業財務預警模型. 通訊和電腦:中英文版, 2(8), 5.
120. 李應求, 曾楊, & 劉偉. (2017). 機構投資者持股對上市公司財務失敗預警的影響研究. 湖湘論壇, (01),81-87.
121. 李鴻禧, & 宋宇. (2020). 基于時間相依Cox回歸的動態財務預警模型及實證. 運籌與管理, (08),177-185.
122. 杨淑娥, & 黄礼. (2005). 基于bp神经网络的上市公司财务预警模型. 系统工程理论与实践, 25(1), 12-18.
123. 周首華, 楊濟華, & 王平. (1996). 論財務危機的預警分析——F分數模式. 會計研究, (8), 8-11.
124. 周敏, & 潘福乙. (2006). 基于eva的财务危机预警模型构建探讨. 中国科技信息, (03B), 1.
125. 庞素琳, 王燕鸣, & 黎荣舟. (2003). 基于bp算法的信用风险评价模型研究. 数学的实践与认识, 33(8), 8.
126. 阿小燕, & 赵娟. (2018). 资源型上市公司财务预警实证分析. 财会月刊(下), (1), 6.
127. 侯俊, & 潘和平. (2010). 企业财务困境预测实证研究——基于主成分分析及二元logistic回归模型. 中国集体经济, (6X), 3.
128. 姜守志, & 林淑輝. (2000). 談現金流量表的分析. 山西財經大學學報, 022(003), 84-86.
129. 姜秀華, 孫錚. (2001). 治理弱化與財務危機:一個預測模型. 南開管理評論, 4(5), 7.
130. 洪琨. (2014). 从雷曼兄弟破产浅谈风险管理. 经济视野, (21), 2.
131. 赵爱玲. (2000). 企业财务危机的识别与分析. 财经理论与实践, 21(6), 4.
132. 夏秀芳. & 遲健心. (2018). 企業財務困境預警研究綜述. 會計之友, (13), 2-6.
133. 孫星, & 邱菀華. (2005).企業財務危機預警雙基點距離比值法. 管理工程學報, (3), 106-110.
134. 孫潔, & 李輝. (2009). 遺傳演算法優化灰色案例推理的財務困境預測.管理科學學報, 30(2), 119-125.
135. 孫潔. (2007).企業財務危機預警的只能決策方法研究. 哈爾濱:哈爾濱工業大學.
136. 孫曉琳, 田也壯, & 王文彬. (2010). 基於Kalman濾波的企業財務危機動態預警模型. 系統管理學報, (04), 408-414+427.
137. 孫曉琳. (2011). 財務危機動態預警模型研究. 上海:上海交通大學出版社.
138. 孫曉琳. (2013). 基於狀態空間的財務危機動態預警模型在中國的實證研究. 中國軟科學, (04),140-147.
139. 時建中, 程龍生, & 牛俊磊. (2013). 基於RS-Bag分類器集成技術的上市公司財務危機預測. 數理統計與管理, (05), 941-950.
140. 馬超群, & 吳麗華. (2009). 基於鄰域粗糙集和神經網絡的財務預警研究. 軟科學, (11), 123-126+139.
141. 高培業, & 張道奎. (2000). 企業失敗判別模型實證研究. 統計研究, (10), 6.
142. 張玲. (2000). 財務危機預警分析判別模型. 數量經濟技術經濟研究, 17(3), 3.
143. 張紅梅, & 賀健. (2020). 基于Cox回歸模型的大數據企業財務風險預警研究. 南方農機, (13), 31+50.
144. 張雪蓮, 王凌云, & 曾小飛. (2010). 基于上市公司財務危機的生存分析.企業技術開發, (07), 66-69.
145. 張俊涵, & 趙壽為. (2021). 基于卡方分箱法和邏輯回歸算法的財務危機預警模型研究. 中國物價, (07), 107-109.
146. 張鳴, & 張艷. (2005). 財務困境預測的實證研究與評述. 中國會計與財務研究, (12), 29-35.
147. 章之旺. (2004). 現金流量在財務困境預測中的資訊含量實證研究——來自2003-2004年度st公司的新證據. 中國管理科學, V(6), 23-28.
148. 郭小敏. (2018). 基于Logit模型的上市公司財務困境預測研究. 經貿實踐, (08), 54-55.
149. 郭麗紅. (2001). 企業財務管理中的槓桿作用與財務危機. 經濟問題, 000(009), 36-37.
150. 陳少華, & 陳愛華. (2012). 企業生命周期劃分及度量方法評析. 財會月刊, (27), 77-78.
151. 陳俊鋒, 余捷, 李馨竹, & 范宸. (2023). 基于機器學習的大型企業財務投資風險預警方法. 市場瞭望, (04), 49-51.
152. 陳星文, & 任佳偉. (2017). 基于COX模型的創業板公司財務危機預警研究. 時代金融, (12), 168-169+172.
153. 陈新, & 陈高娟. (2023). 考虑现金流量的企业财务风险预警方法. 财富生活, (4), 163-165.
154. 陈欣欣, & 郭洪涛. (2022). 因子分析和logistic回归在农业上市公司财务预警中的联合运用. 数理统计与管理, 41(1), 14.
155. 陳曉, & 陳治鴻. (2000) 中國上市公司的財務困境預測. 中國會計與財務研究, 002(003), 55-92.
156. 陳靜. (1999). 上市公司財務惡化預測的實證分析. 會計研究, (04).
157. 喻辉. (2005). 上市公司财务预警系统研究. (博士). 武汉理工大学.
158. 彭韶兵,& 邢精平. (2005). 公司財務危機論. 北京:清華大學出版社.
159. 閔劍, & 李佳穎. (2021). 生命周期視角下中小企業財務風險評估研究——基于生存分析. 財會通訊, (04), 146-150.
160. 黃巖, & 李元旭. (2001). 上市公司財務失敗預測實證研究. 系統工程理論方法應用, (01), 45-51.
161. 楊保安, 季海, 徐晶, & 溫金祥. (2001). BP神經網絡在企業財務危機預警之應用. 預測, (02), 49-54+68.
162. 楊建輝, & 陳熾文. (2011). 上市公司財務困境預測模型比較研究. 科技管理研究, (02), 224-226.
163. 楊海軍, & 太雷. (2009). 基於模糊支持向量機的上市公司財務困境預測. 管理科學學報, (03), 102-110.
164. 楊淑娥, & 王樂平. (2007). 基於BP神經網絡和麵板數據的上市公司財務危機預警. 系統工程理論與實踐, (02), 61-67.
165. 楊雪芹. (2021). 企業現金流量表分析. 會計師, (08), 11-12.
166. 楊朝陽. (2011). 論基于企業生命周期的財務預警指標體系. 商場現代化, (15), 119.
167. 楊朝陽. (2011). 論基於企業生命週期的財務預警指標體系. 商場現代化, (15), 119.
168. 雷振華, & 楚攀. (2013). 基于Cox模型的財務風險預警實證研究——以1990-2012年信息技術類上市公司數據為例. 湖南社會科學, (06), 164-167.
169. 管河山, 李溪溪, & 王謙. (2022). 基于COX模型的財務危機動態預測方法. 南華大學學報(社會科學版), (01), 57-68.
170. 趙愛玲. (2000). 企業財務危機的識別與分析. 財經理論與實踐, (6), 69-72.
171. 趙蒲, & 孫愛英. (2005). 資本結構與產業生命週期: 基於中國上市公司的實證研究. 管理工程學報, (03), 42-46.
172. 趙潔. (2023). 基于Logistic和Cox回歸模型的上市公司財務危機預警模型研究. 中國集體經濟, (10), 95-98.
173. 劉博倫, & 陳淵智. (2022). 計量經濟學下企業財務風險預警指標體系構建. 財會學習, (32), 19-21.
174. 劉新允, 龐清樂, & 劉愛國. (2007). 基於遺傳神經網絡的財務危機預警研究. 商業研究, (09), 6-10.
175. 潘雅瓊, & 劉艷. (2021). 科技型企業財務危機預警研究 —— 基於生存分析法. 會計之友, (08), 64-70.
176. 穀祺, & 劉淑蓮. (1999). 財務危機企業投資行為分析與對策. 會計研究, (10), 28-31.
177. 蔡玉兰. (2016). 财务报表信息对企业财务困境的预测能力. 预测, 35(5), 7.
178. 鄧馨, & 劉宏. (2015). 引入EVA指標的上市公司財務預警模型構建——基于logistic回歸分析. 商業會計, (09), 29-31.
179. 魏光興. (2005). 企業生命周期理論綜述及簡評. 生產力研究, (06), 231-232.
180. 魏麗絲. (2014). 生命周期理論文獻綜述. 合作經濟與科技, (24), 155-156.
181. 羅琇仁. (2023). 企業財務風險預警指標體系構建. 投資與創業, (03), 66-68.
182. 譚建華. (2015). 基于行業生命周期的并購財務風險預警模型研究. 中國商論, (24), 175-179.
183. 蘇振偉. (2023). 企業財務危機預警研究綜述. 現代商業, (15), 185-188.
184. 龔小君, & 王光華. (2005). 我國FEW研究的回顧與展望——20世紀90年代以來國內FEW研究評析. 重慶郵電學院學報科學社會版, (2), 41-46.