本校學位論文庫
CITYU Theses & Dissertations
論文詳情
晏宇欣
葛東嬌
數據科學學院
數據科學碩士學位課程(中文學制)
碩士
2023
多變數函數對函數回歸的函數型Takagi-Sugeno模糊系統
Takagi-Sugeno Functional Fuzzy System for Multivariate Function-on-Function Regression
數據科學 ; 模糊系統 ; 函數對函數回歸 ; 函數型主成分分析 ; 函數型聚類
Fuzzy systems ; function-on-function regression ; functional principal component analysis ; functional clustering
公開日期:28/6/2027
使用模糊邏輯進行多變量函數對函數回歸,是對模糊系統及函數型數據分析(FDA)兩個領域的一項重要進展。本文提出了Takagi-Sugeno多變量函數模糊系統(T-S mFFS),這種新方法利用模糊系統的可解釋性和靈活性,解決了函數數據中的複雜關係。模型接受多個函數數據輸入并輸出單一結果(MISO),並通過一系列的“IF-Then”規則來構建輸出的線性模型,這些模型具有雙變量斜率函數。為了識別這一系統,采用了專門的方法,利用函数型主成分分析(FPCA)進行曲線擬合,多變量函數數據聚類來確定規則數量,以及最小化二次損失函數來識別斜率函數。本文通過使用來自多個領域的真實數據集進行的比較分析,驗證了所提出系統的有效性。本研究認為該算法有潛力應用於醫療數據,並有待進一步分析。本研究著重於將模糊邏輯與函數回歸相結合,開發穩健且可解釋的高維數據模型的重要性。
The use of Takagi-Sugeno fuzzy logic in Functional Data Analysis (FDA) for multivariate function-on-function regression represents a significant advancement in both fields. This thesis introduces the Takagi-Sugeno Multivariate Functional Fuzzy System (T-S mFFS), a novel approach that leverages the interpretability and flexibility of fuzzy systems to address the complex relationships in functional data. This innovative model accepts multiple functional data inputs and produces single outputs(MISO), constructed using a series of "IF-Then" rules that output a linear model of the multivariate data with bivariate slope functions. To identify this system, a specialized approach is implemented, utilizing functional principal component analysis (FPCA) for curve fitting, multivariate functional data clustering to determine the rule number, and minimization of a quadratic loss function to identify slope functions. The proposed system demonstrates its efficacy through comparative analysis with state-of-the-art models, utilizing real datasets from various domains. The application to FDA presents a novel perspective, with potential implications for biomedical data analysis pending empirical validation. This research underscores the importance of combining fuzzy logic with functional regression to develop robust and interpretable models for high-dimensional functional data.
2024
英文
231
Acknowledgments I
摘 要 II
Abstract III
Table of Contents IV
Table of Figures VI
Table of Tables XXI
Chapter 1 Introduction 1
1.1 Context and Significance 1
1.2 Research Questions 3
1.3 Research Objectives 5
Chapter 2 Background and Related Work 7
2.1 Multivariate Function-on-Function Regression 7
2.1.1 Functional Data Basics 8
2.1.2 Function-on-Function Regression 26
2.1.3 Multivariate Functional Regression 27
2.2 Takagi-Sugeno Fuzzy System-Based Regression 33
2.2.1 Fuzzy Systems 33
2.2.2 Takagi-Sugeno Fuzzy System 40
2.2.3 Fuzzy Systems in Function-on-Function 41
Chapter 3 Takagi-Sugeno Multivariate Functional Fuzzy System 44
3.1 T-S Multivariate Functional Fuzzy System the Model and its Identification Problem 45
3.2 Identification Approach for T-S mFFS 48
3.2.1 Data preprocessing 48
3.2.2 Identifying the rule number and antecedent parameters 49
3.2.3 Identifying the consequent parameters 50
Chapter 4 Numerical Examples 55
4.1 Ocean 57
4.2 Air Quality 64
4.3 Bike sharing 71
4.4 Population Growth 78
4.5 Sanitation Mortality 87
4.6 Agriculture 99
Chapter 5 Extra Benchmark Examples: Airports 108
5.1 airports-24 108
5.1.1 Changchun 108
5.1.2 Guilin 119
5.1.3 Hefei 130
5.1.4 Huhehaote 141
5.1.5 Kunming 152
5.1.6 Nanjing 163
5.1.7 Sanya 174
5.2 airports-48 185
5.2.1 Beijing 185
5.2.2 Guangzhou 196
5.2.3 Taipa 207
Chapter 6 Conclusion and Future Work 218
6.1 Conclusion 218
6.2 Future Work 219
6.3 Expanding Applications in Various Domains 221
Reference 223
1. Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis (2nd ed.). Springer.
2. Marron, J., Ramsay, J., Sangalli, L., & Srivastava, A. (2015). Functional Data Analysis of Amplitude and Phase Variation. arXiv: Methodology. https://doi.org/10.1214/15-STS524.
3. Wang, J., Chiou, J., & Mueller, H. (2015). Review of Functional Data Analysis. arXiv: Methodology.
4. Goldsmith, J., & Scheipl, F. (2014). Estimator selection and combination in scalar-on-function regression. Computational Statistics & Data Analysis, 70, 362–372. https://doi.org/10.1016/j.csda.2013.08.016
5. Cai, T., Xue, L., & Cao, Y. (2021). Robust variable selection for function-on-scalar regression with numerous predictors. Statistica Sinica, 31(2), 751–773. https://doi.org/10.5705/ss.202018.0307
6. Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 2, 321–359.
7. Jiang, C., Yan, L., Xu, H., & Li, Y. (2021). Variable screening in multivariate linear regression with high-dimensional covariates. Statistical Theory and Related Fields, 6(2), 241–253. https://doi.org/10.1080/24754269.2021.1982607
8. Górecki, T., Krzyśko, M., & Wołyński, W. (2019). Variable selection for classification of multivariate functional data. Statistics in Transition New Series, 20(2), 123–138. https://doi.org/10.21307/stattrans-2019-018
9. Qian, Y., He, Z., Wu, Y., & Zhan, W. (2023). Joint variable selection for high-dimensional multivariate regression using a mixed penalty. Journal of Applied Statistics, 1–16. https://doi.org/10.1080/02664763.2023.2180281
10. Haghbin, M., & Xu, Y. (2023). Bayesian variable selection and prediction for multivariate linear regression with a generalized Dirichlet prior. Journal of Multivariate Analysis, 196, 104993. https://doi.org/10.1016/j.jmva.2023.104993
11. Happ, C., & Greven, S. (2018). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association, 113(522), 649–659. https://doi.org/10.1080/01621459.2016.1273115
12. Chiou, J. M., Chen, H., & Yang, Y. F. (2014). Multivariate functional principal component analysis: A normalization approach. Statistica Sinica, 24(4), 1571–1596.
13. Cai, T., Ma, Y., & Xia, Y. (2022). Variable selection and estimation for multivariate linear regression models via regularization. Statistical Science, 37(2), 284–305. https://doi.org/10.1214/21-STS830
14. Ge, D., & Zeng, X. (2021). Functional Fuzzy System: A Nonlinear Regression Model and Its Learning Algorithm for Function-on-Function Regression. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2021.3050857
15. Hastie, T., & Tibshirani, R. (1993). Varying-Coefficient Models. Journal of the Royal Statistical Society.
16. Goldsmith, J., Bobb, J., Crainiceanu, C. M., Caffo, B., & Reich, D. (2011). Penalized Functional Regression. Journal of Computational and Graphical Statistics.
17. Reiss, P. T., & Ogden, R. T. (2007). Functional Principal Component Regression and Functional Partial Least Squares. Journal of the American Statistical Association.
18. Gertheiss, J., & Tutz, G. (2010). Sparse Modeling of Categorical Explanatory Variables. Annals of Applied Statistics.
19. Preda, C., & Saporta, G. (2005). PLS Regression on a Stochastic Process. Computational Statistics & Data Analysis.
20. Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis (2nd ed.). Springer.
21. Percival, D. B., & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge University Press.
22. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.
23. Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. *Statistical Science*, 11(2), 89–102.
24. Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425–441.
25. De Boor, C. (2001). *A Practical Guide to Splines*. Springer.
26. Wahba, G. (1990). *Spline Models for Observational Data*. SIAM.
27. Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.
28. Wand, M. P., & Jones, M. C. (1994). Kernel Smoothing. CRC Press.
29. Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610.
30. Gu, C. (1992). Cross-validating non-Gaussian data. Journal of Computational and Graphical Statistics, 1(2), 169–179.
31. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions. Numerical Mathematics, 31(4), 377–403.
32. Peijun Sang, Liangliang Wang, & Jiguo Cao. (2017). Parametric functional principal component analysis. Biometrics, 73. DOI: 10.1111/biom.12641.
33. Z. Lin, Liangliang Wang, & Jiguo Cao. (2016). Interpretable functional principal component analysis. Biometrics, 72. DOI: 10.1111/biom.12457.
34. H. Cardot. (2007). Conditional Functional Principal Components Analysis. Scandinavian Journal of Statistics, 34. DOI: 10.1111/j.1467–9469.2006.00521.x.
35. Nie et al. (2018). The paper and specifics were not located in the provided data; please refer to the original source for the citation.
36. Kehui Chen & Jing Lei. (2015). Localized Functional Principal Component Analysis. Journal of the American Statistical Association, 110, 1266–1275. DOI: 10.1080/01621459.2015.1016225.
37. Jordan T. Johns, C. Crainiceanu, V. Zipunnikov, & Jonathan E. Gellar. (2019). Variable-Domain Functional Principal Component Analysis. Journal of Computational and Graphical Statistics, 28, 1006-993. DOI: 10.1080/10618600.2019.1604373.
38. Härdle & Kneip. (2006). The paper and specifics were not located in the provided data; please refer to the original source for the citation.
39. Ci-Ren Jiang & Jane-ling Wang. (2010). Covariate Adjusted Functional Principal Components Analysis for Longitudinal Data. Annals of Statistics, 38, 1194-1226. DOI: 10.1214/09-AOS742.
40. Jiang, C.-R., Lila, E., Aston, J. A. D., & Wang, J.-L. (2022). Eigen-adjusted functional principal component analysis. arXiv. https://doi.org/10.48550/arXiv.2204.05622
41. Yunlong Nie & Jiguo Cao. (2020). Sparse functional principal component analysis in a new regression framework. Comput. Stat. Data Anal., 152, 107016. DOI: 10.1016/j.csda.2020.107016.
42. Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590.
43. Yehua Li, Naisyin Wang, & R. Carroll. (2013). Selecting the Number of Principal Components in Functional Data. Journal of the American Statistical Association, 108(503), 1284-1294. DOI: 10.1080/01621459.2013.788980.
44. Lin, Z., Wang, L., & Cao, J. (2016). Interpretable functional principal component analysis. Biometrics, 72, 653-663.
45. Härdle, W., & Kneip, A. (2006). Common functional principal components. ERN: Other Econometrics: Econometric & Statistical Methods (Topic).
46. Nie, Y., & Cao, J. (2020). Sparse functional principal component analysis in a new regression framework. Comput. Stat. Data Anal., 152, 107016.
47. Johns, J. T., Crainiceanu, C., Zipunnikov, V., & Gellar, J. E. (2019). Variable-Domain functional principal component analysis. Journal of Computational and Graphical Statistics, 28, 993-1006.
48. Yang, P., Tan, Q., & He, J. (2018). Function-on-Function Regression with Mode-Sparsity Regularization. ACM Transactions on Knowledge Discovery from Data (TKDD), 12(1), 1-23.
49. Luo, R., & Qi, X. (2019). Interaction Model and Model Selection for Function-on-Function Regression. Journal of Computational and Graphical Statistics, 28(2), 309-322.
50. Zhou, Z. (2021). Fast implementation of partial least squares for function-on-function regression. Journal of Multivariate Analysis, 185, 104769.
51. Xin Qi & Ruiyan Luo. (2019). Nonlinear function on function additive model with multiple predictor curves. Statistica Sinica. DOI: 10.5705/SS.202017.0249.
52. Darbalaei, M., Amini, M., Febrero-Bande, M., & Fuente, M. O. de la. (2022). On additive functional regression models. Journal of Multivariate Analysis, 183, 104775. DOI: 10.1016/j.jmva.2021.104775.
53. Lin, N., & Zhang, H. H. (2015). Functional additive models. Journal of Computational and Graphical Statistics, 24(3), 797-812.
54. Morris, J. S., & Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 179-199.
55. Goldsmith, J., Crainiceanu, C., Caffo, B., & Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuroimaging predictors. NeuroImage, 57(2), 805-814.
56. Zhu, H., Brown, P. J., & Morris, J. S. (2012). Robust classification of functional and quantitative image data using functional mixed models. Biometrics, 68(4), 1239-1248.
57. Gertheiss, J., Goldsmith, J., & Staicu, A. M. (2013). A note on modeling sparse exponential-family functional response curves. Computational Statistics & Data Analysis, 64, 141-145.
58. Lian, H., Guo, X., & Nie, J. (2021). Sparse multivariate functional linear model for imaging genetics data. Statistics in Medicine, 40(6), 1574-1589.
59. Kong, D., Staicu, A. M., & Maity, A. (2018). Classical testing in functional linear models. Statistical Sinica, 28(1), 1169-1188.
60. Ren, R., Fang, K., Zhang, Q., & Wang, X. (2023). Multivariate functional data clustering using adaptive density peak detection. Statistics in Medicine, 42(8), 1565-1582.
61. Park, J., Staicu, A. M., & Maity, A. (2018). A functional varying coefficient model for functional mixed design data. Biometrics, 74(1), 15-24.
62. Happ, C., & Greven, S. (2018). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association, 113(522), 649-659.
63. Mignolet, B., Josse, J., & Nuel, G. (2021). Sparse multivariate partial least squares regression. Statistics and Computing, 31(6), 1-13.
64. Qiu, Y., Li, H., & Cheng, G. (2020). Functional Gaussian graphical models. Journal of the American Statistical Association, 115(529), 423-435.
65. Guo, X., Staicu, A. M., & Crainiceanu, C. M. (2014). Cross-subject and within-subject Bayesian functional principal component analysis. Biometrika, 101(2), 409-428.
66. Witten, D. M., Tibshirani, R., & Hastie, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3), 515-534.
67. McLean, M. W., Hooker, G., & Ruppert, D. (2014). Functional generalized additive models. Journal of Computational and Graphical Statistics, 23(1), 249-269.
68. Shang, H. L. (2018). Functional time series forecasting with dynamic updating. International Journal of Forecasting, 34(1), 40-54.
69. Tarpey, T., & Kinateder, K. K. (2003). Clustering functional data. Journal of Classification, 20(1), 93-114.
70. Luo, R., & Qi, X. (2017). Function-on-Function Linear Regression by Signal Compression. Journal of the American Statistical Association, 112(518), 690–705. https://doi.org/10.1080/01621459.2016.1164053
71. Beyaztas, Ufuk & Shang, Han Lin. (2023). Robust Functional Linear Regression Models. The R Journal. 15. 212-233. 10.32614/RJ-2023-033.
72. Ivanescu, A. E., Staicu, A.-M., Scheipl, F., & Greven, S. (2015). Penalized function-on-function regression. Computational Statistics, 30(2), 539-568. https://doi.org/10.1007/s00180-014-0548-4
73. Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4):1-28. https://dx.doi.org/10.18637/jss.v051.i04
74. Beyaztas, U., & Shang, H. L. (2019). On function-on-function regression: Partial least squares approach. Statistics and Computing, 29(2), 267–281.
75. Luo, R., & Qi, X. (2017). Function-on-Function Linear Regression by Signal Compression. Journal of the American Statistical Association, 112(518), 690–705. https://doi.org/10.1080/01621459.2016.1164053
76. Beyaztas, Ufuk & Shang, Han Lin. (2023). Robust Functional Linear Regression Models. The R Journal. 15. 212-233. 10.32614/RJ-2023-033.
77. Jerry M. Mendel. (2001). Uncertain rule-based fuzzy logic systems: Introduction and new directions. Prentice Hall.
78. Harliana, N., & Rahim, N. A. (2017). Analysis of membership function on Mamdani fuzzy inference system for heart disease risk. Proceedings of the 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), 216-221.
79. Sadollah, A. (2018). Introductory chapter: Which membership function is appropriate in fuzzy system? In Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications. IntechOpen.
80. Chung, Y. J., Hong, D. H., Park, S., & Lee, K. C. (2017). A particle filtering approach for membership function tuning in fuzzy systems. IEEE Transactions on Fuzzy Systems, 25(1), 86-101.
81. Ullah, K., Malik, A. W., & Hussain, S. A. (2016). Optimization of fuzzy membership functions for efficient cloud resource management. Proceedings of the 2016 International Conference on Cloud Computing Research and Innovation (ICCCRI), 106-114.
82. Khorsheed, A., & Aminifar, S. (2023). Measuring uncertainty to extract fuzzy membership function in a food recommendation system. Mathematics, 11(2), 373.
83. Patel, D., & Yadav, P. (2014). “Fault diagnosis using fuzzy logic.” Proceedings of the International Conference on Innovations in Engineering and Technology (ICIET).
84. Kim, D., & Oh, S. (1992). “A fuzzy logic controller for air conditioning system.” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
85. Pappis, C., & Mamdani, E. (1977). “A fuzzy logic controller for a traffic signal system.” Fuzzy Sets and Systems.
86. Yager, R. (1980). “Fuzzy decision making including unequal objectives.” Fuzzy Sets and Systems.
87. Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence.
88. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
89. Rastegar, S., Araújo, R., & Mendes, J. (2017). Online identification of Takagi–Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm. Applied Mathematical Modelling, 45, 606-620. https://doi.org/10.1016/j.apm.2017.01.019
90. Jacquin, A. P., & ShaMSPEldin, A. Y. (2006). Rainfall-runoff modeling using Takagi-Sugeno fuzzy inference systems. Journal of Hydrology, 329(1-2), 154-173.
91. Cavallaro, F. (2015). Fuzzy logic-based model for sustainability indexing in biomass supply chains. Applied Energy, 139, 133-147.
92. Hájek, P., & Olej, V. (2014). Bankruptcy prediction modeling with fuzzy-evolutionary algorithms. Journal of Business Economics and Management, 15(5), 1040-1060.
93. Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3(5), 807-814.
94. Jacquin, A. P., & ShaMSPEldin, A. Y. (2006). Rainfall-runoff modeling using Takagi-Sugeno fuzzy inference systems. Journal of Hydrology, 329(1-2), 154-173.
95. Hájek, P., & Olej, V. (2014). Bankruptcy prediction modeling with fuzzy-evolutionary algorithms. Journal of Business Economics and Management, 15(5), 1040-1060.
96. Cavallaro, F. (2015). Fuzzy logic-based model for sustainability indexing in biomass supply chains. Applied Energy, 139, 133-147.
97. Cavallaro, F. (2015). A Takagi-Sugeno fuzzy inference system for developing a sustainability index of biomass. Sustainability, 7(9), 12359-12371. https://doi.org/10.3390/SU70912359
98. Jacquin, A. P., & ShaMSPEldin, A. Y. (2006). Rainfall-runoff modeling using Takagi-Sugeno fuzzy inference systems. Journal of Hydrology, 329(1-2), 154-173.
99. Ali, A., Shahzad, M., Kamran, M., & Tariq, A. (2022). Takagi-Sugeno fuzzy system-based predictive maintenance for manufacturing. Journal of Manufacturing Systems, 63, 292-300.
100. Zhang, H., Liu, S., & Li, X. (2020). Solar power forecasting using Takagi-Sugeno fuzzy system. Renewable Energy, 146, 1524-1532.
101. Niazi, K., Bhatti, A. I., Hussain, M., & Javed, F. (2016). Takagi-Sugeno-Kang fuzzy system for electric load forecasting. IEEE Transactions on Industrial Informatics, 12(1), 304-313.
102. Yang, W., Wang, J., & Li, Z. (2021). Takagi-Sugeno-Kang fuzzy system-based traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1637-1648.
103. Zhou, P., Li, C., & Yang, X. (2022). Adaptive Takagi-Sugeno-Kang fuzzy system for fault diagnosis in industrial equipment. IEEE Transactions on Industrial Electronics, 69(7), 6805-6813.
104. Ahmed, I., Hussain, M., & Bhatti, A. I. (2019). Hierarchical Takagi-Sugeno-Kang fuzzy system for health monitoring in smart cities. IEEE Transactions on Fuzzy Systems, 27(10), 1931-1941.
105. Cheng, H., Zhang, X., & Zhou, Z. (2020). Neuro-fuzzy TSK system for economic forecasting. Journal of Applied Economics, 53(2), 397-409.
106. Li, J., Zhang, Y., & Xu, Y. (2018). Self-organizing Takagi-Sugeno-Kang system for industrial automation. IEEE Transactions on Automation Science and Engineering, 15(2), 555-564.
107. Martínez, D., González, J., & Blanco, E. (2019). Hybrid Takagi-Sugeno-Kang system for renewable energy management. IEEE Transactions on Sustainable Energy, 10(1), 356-367.
108. Angelov, P. (2010). Evolving intelligent systems: methodology and applications. John Wiley & Sons.
109. Ge, D., & Zeng, X. (2020). Learning data streams online — An evolving fuzzy system approach with self-learning/adaptive thresholds. Information Sciences, 507, 172-184. https://doi.org/10.1016/j.ins.2019.08.036
110. Ge, D., & Zeng, X. (2021). Functional Fuzzy System: A Nonlinear Regression Model and Its Learning Algorithm for Function-on-Function Regression. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2021.3050857
111. Ren, R., Fang, K., Zhang, Q., & Wang, X. (2023). Multivariate functional data clustering using adaptive density peak detection. Statistics in Medicine. https://doi.org/10.1002/sim.9687
112. Wu, X., Ward, R., & Bottou, L. (2018). WNGrad: Learn the Learning Rate in Gradient Descent. arXiv preprint arXiv:1803.02865. https://arxiv.org/abs/1803.02865
113. Jacquin, A. P., & ShaMSPEldin, A. Y. (2006). Rainfall-runoff modeling using Takagi-Sugeno fuzzy inference systems. Journal of Hydrology, 329(1-2), 154-173.
114. Cavallaro, F. (2015). Fuzzy logic-based model for sustainability indexing in biomass supply chains. Applied Energy, 139, 133-147.
115. Hájek, P., & Olej, V. (2014). Bankruptcy prediction modeling with fuzzy-evolutionary algorithms. Journal of Business Economics and Management, 15(5), 1040-1060.
116. Wu, X., Ward, R., & Bottou, L. (2018). WNGrad: Learn the Learning Rate in Gradient Descent. arXiv preprint arXiv:1803.02865. https://arxiv.org/abs/1803.02865
117. De Vito, S. etal (2008) Sensors and Actuators B: Chemical, 129: 50-757.
118. Angelov, P., & Zhou, X. (2006). Evolving fuzzy systems from data streams in real-time. 2006 International Symposium on Evolving Fuzzy Systems, 29-35. https://doi.org/10.1109/ISEFS.2006.251157